illuminating altered metabolic signaling in cancer

qgycMQSs.jpeg

Publications

 
 
 

Selected Publications


2024

Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell. 2024 Apr 17:S0092-8674(24)00318-0. doi: 10.1016/j.cell.2024.03.027. Epub ahead of print. PMID: 38653237.

https://pubmed.ncbi.nlm.nih.gov/38653237/

Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol. 2024 Mar 21;31(3):446-451. doi: 10.1016/j.chembiol.2024.02.015. PMID: 38518745.

https://pubmed.ncbi.nlm.nih.gov/38518745/

Ge M, Papagiannakopoulos T, Bar-Peled L. Reductive stress in cancer: coming out of the shadows. Trends Cancer. 2024 Feb;10(2):103-112. doi: 10.1016/j.trecan.2023.10.002. Epub 2023 Nov 2. PMID: 37925319.

https://pubmed.ncbi.nlm.nih.gov/37925319/

2023

Zhang, J., Simpson, C. M., Berner, J., Chong, H. B., Fang, J., Ordulu, Z., Weiss-Sadan, T., Possemato, A. P., Harry, S., Takahashi, M., Yang, T. Y., Richter, M., Patel, H., Smith, A. E., Carlin, A. D., Hubertus de Groot, A. F., Wolf, K., Shi, L., Wei, T. Y., Dürr, B. R., … Bar-Peled, L. (2023). Systematic identification of anticancer drug targets reveals a nucleus-to-mitochondria ROS-sensing pathway. Cell, 186(11), 2361–2379.e25.

https://pubmed.ncbi.nlm.nih.gov/37192619/

Weiss-Sadan, T., Ge, M., Hayashi, M., Gohar, M., Yao, C. H., de Groot, A., Harry, S., Carlin, A., Fischer, H., Shi, L., Wei, T. Y., Adelmann, C. H., Wolf, K., Vornbäumen, T., Dürr, B. R., Takahashi, M., Richter, M., Zhang, J., Yang, T. Y., Vijay, V., … Bar-Peled, L. (2023). NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell metabolism, 35(4), 722.

https://pubmed.ncbi.nlm.nih.gov/37019082/

Zhang, J., Simpson, C. M., Berner, J., Chong, H. B., Fang, J., Sahin, Z. O., Weiss-Sadan, T., Possemato, A. P., Harry, S., Takahashi, M., Yang, T. Y., Richter, M., Patel, H., Smith, A. E., Carlin, A. D., Hubertus de Groot, A. F., Wolf, K., Shi, L., Wei, T. Y., Dürr, B. R., … Bar-Peled, L. (2023). Identification of chemotherapy targets reveals a nucleus-to-mitochondria ROS sensing pathway. bioRxiv

https://pubmed.ncbi.nlm.nih.gov/36945474/

Bar-Peled, L., & Lamming, D. W. (2023). mTOR gets greasy: lysosomal sensing of cholesterol. Cell research, 33(3), 189–190.

https://pubmed.ncbi.nlm.nih.gov/36284233/

2022

Bar-Peled, L., & Kory, N. (2022). Principles and functions of metabolic compartmentalization. Nature metabolism, 4(10), 1232–1244.

https://pubmed.ncbi.nlm.nih.gov/36266543/

2021

Tanaka, N., Lin, J. J., Li, C., Ryan, M. B., Zhang, J., Kiedrowski, L. A., Michel, A. G., Syed, M. U., Fella, K. A., Sakhi, M., Baiev, I., Juric, D., Gainor, J. F., Klempner, S. J., Lennerz, J. K., Siravegna, G., Bar-Peled, L., Hata, A. N., Heist, R. S., & Corcoran, R. B. (2021). Clinical Acquired Resistance to KRASG12C Inhibition through a Novel KRAS Switch-II Pocket Mutation and Polyclonal Alterations Converging on RAS-MAPK Reactivation. Cancer discovery, 11(8), 1913–1922.

https://pubmed.ncbi.nlm.nih.gov/33824136/

2020

Ichu, T. A., Reed, A., Ogasawara, D., Ulanovskaya, O., Roberts, A., Aguirre, C. A., Bar-Peled, L., Gao, J., Germain, J., Barbas, S., Masuda, K., Conti, B., Tontonoz, P., & Cravatt, B. F. (2020). ABHD12 and LPCAT3 Interplay Regulates a Lyso-phosphatidylserine-C20:4 Phosphatidylserine Lipid Network Implicated in Neurological Disease. Biochemistry, 59(19), 1793–1799.

https://pubmed.ncbi.nlm.nih.gov/32364701/

Raffeiner, P., Hart, J. R., García-Caballero, D., Bar-Peled, L., Weinberg, M. S., & Vogt, P. K. (2020). An MXD1-derived repressor peptide identifies noncoding mediators of MYC-driven cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 117(12), 6571–6579.

https://pubmed.ncbi.nlm.nih.gov/32156728/

2019

Zhang, J., & Bar-Peled, L. (2019). How Sweet It Is: Small-Molecule Inhibitors of mTORC1 Glucose Sensing. Cell chemical biology, 26(9), 1195–1196.

https://pubmed.ncbi.nlm.nih.gov/31539502/

Rasheed, N., Lima, T. B., Mercaldi, G. F., Nascimento, A. F. Z., Silva, A. L. S., Righetto, G. L., Bar-Peled, L., Shen, K., Sabatini, D. M., Gozzo, F. C., Aparicio, R., & Smetana, J. H. C. (2019). C7orf59/LAMTOR4 phosphorylation and structural flexibility modulate Ragulator assembly. FEBS open bio, 9(9), 1589–1602.

https://pubmed.ncbi.nlm.nih.gov/31314152/

Chen AL, Lum KM, Lara-Gonzalez P, Ogasawara D, Cognetta AB 3rd, To A, Parsons WH, Simon GM, Desai A, Petrascheck M#, Bar-Peled L#, Cravatt BF*. Pharmacological convergence reveals a lipid pathway that regulates C. eleganslifespan. Nat Chem Bio, In press.  

Solis GM, Kardakaris R, Valentine ER, Bar-Peled L, Chen AL, Blewett MM, McCormick MA, Williamson JR, Kennedy B, Cravatt BF, Petrascheck M.(2018). Translation attenuation by minocycline enhances longevity and proteostaiss in old post-stress-responsive organisms. eLife 7:e40314. 

Lamming, D. W., & Bar-Peled, L. (2019). Lysosome: The metabolic signaling hub. Traffic, 20(1), 27–38.

Additional Publications

Bar-Peled L.*#, Kemper E. K*., Suciu R. M, Vinogradova E. V., Backus K. M., Horning ¬B. D., Paul T. A., Ichu T-A., Svensson R. U., Olucha J., Chang M. W., Kok B. P., Zhou Z., Ihle N., Dix M. M., Hayward M., Jiang P., Saez E., Shaw R. J., and Cravatt B. F.# (2017). Chemical Proteomics Identifies Druggable Vulnerabilities in a Genetically Defined Cancer. Cell 171: 696-709.
https://www.ncbi.nlm.nih.gov/pubmed/28965760

Schweitzer L.D., Comb W.C., Bar-Peled L., and Sabatini D.M. (2015). Disruption of the Rag-Ragulator complex by c17orf59 inhibits mTORC1. Cell Rep. 12: 1445-55.
https://www.ncbi.nlm.nih.gov/pubmed/26299971

Wang S., Tsun Z-Y., Wolfson R.W., Shen K., Wyant G. A., Plovanich M.E., Yuan Y.D., Jones T. D., Chantranupong L., Comb W., Wang T., Bar-Peled L., Zoncu R., Straub C., Kim C., Park J., Sabatini B.L., and Sabatini D.M. (2015) The amino acid transporter SLC38A9 is a key component of a lysosomal membrane complex that signals arginine sufficiency to mTORC1. Science. 347: 188-194. 
https://www.ncbi.nlm.nih.gov/pubmed/25567906
Comment in: 
Cell biology: Making sense of amino acid sensing (Science 2015)
https://www.ncbi.nlm.nih.gov/pubmed/25574008

Bar-Peled L. (2014). Size does matter. Science 346: 1191-1192.
https://www.ncbi.nlm.nih.gov/pubmed/25477447
Comment in: 
Science 2014: http://www.sciencemag.org/how-cell-size-matters-research-earns-top-prize-young-scientists-supported-scilifelab-science
Podcast: https://www.aaas.org/news/liron-bar-peled-wins-2014-science-scilifelab-prize-young-scientists

Chantranupong L., Wolfson R.L., Orozco J.M., Saxton R.A., Scaria S.M., Bar-Peled L., Spooner E., Isasa M., Gygi S.P., Sabatini D.M. (2014). The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep. 9: 1-8.
https://www.ncbi.nlm.nih.gov/pubmed/25263562

Bar-Peled L. and Sabatini D.M. (2014). Regulation of mTORC1 by amino acids. Trends in Cell Biol. 7: 400-406. 
https://www.ncbi.nlm.nih.gov/pubmed/24698685

Tsun Z-Y., Bar-Peled L.*, Chantranupong L.*,  Zoncu R., Wang T.,  Kim C., Spooner E., Sabatini D.M. (2013). The Folliculin Tumor Suppressor is a GAP for the RagC/D GTPases That Signal Amino Acid Levels to mTORC1. Molecular Cell 52: 495-505. 
https://www.ncbi.nlm.nih.gov/pubmed/24095279
Comment in: 
Signaling: Finding the GAPs in mTORC1 signaling (Nat. Rev Cancer 2013)
https://www.ncbi.nlm.nih.gov/pubmed/24226192

Bar-Peled L.*,Chantranupong L.*, Cherniack A. D., Chen W. W., Ottina K. A., Grabiner, Spear E. A., Carter S. L., Meyerson M. L., and Sabatini D. M. (2013). A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340: 1100-1106.
https://www.ncbi.nlm.nih.gov/pubmed/23723238
Comment in: 
Cell Biology. GATORs take a bite out of mTOR (Science 2013)
https://www.ncbi.nlm.nih.gov/pubmed/23723225

Bar-Peled L. and Sabatini D.M. (2012). mTORC1 signaling at the lysosomal surface. Cell 151: 1390-1390e1. 
https://www.ncbi.nlm.nih.gov/pubmed/23217718


Bar-Peled L., Schwietzer L. D., Zoncu R., and Sabatini D.M. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1 (2012). Cell 150: 1196-1208.
https://www.ncbi.nlm.nih.gov/pubmed/22980980

Zoncu, R., Bar-Peled, L., Efeyan, A., Wang, S., Sancak, Y., Sabatini, D.M., (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H+-ATPase. Science 334: 678-683.
https://www.ncbi.nlm.nih.gov/pubmed/22053050
Comment in:
Cell biology. Growth signaling from inside (Science 2011)
https://www.ncbi.nlm.nih.gov/pubmed/22053050

Sancak, Y.*, Bar-Peled, L.*, Zoncu, R., Markhard, A.L., Nada, S. and Sabatini, D.M. (2010) Ragulator-Rag Complex Targets mTORC1 to the Lysosomal Surface and Is Necessary for Its Activation by Amino Acids. Cell 141: 290-303.
https://www.ncbi.nlm.nih.gov/pubmed/20381137
Comment in: 
Lysosomal Rag-ulation of mTOR complex 1 activity (Cell Metab. 2010): https://www.ncbi.nlm.nih.gov/pubmed/20444413
Cell signaling: Of Rags and Ragulator (Nat Rev Mol Cell Biol. 2010):
https://www.ncbi.nlm.nih.gov/pubmed/20445544

Yang T., Bar-Peled, L., Gebhart L., Lee S.G., Bar-Peled M. (2009). Identification of galacturonic acid-1-phosphate kinase, a new member of the GHMP kinase superfamily in plants and comparison with galactose-1-phosphate kinase. J. Biol. Chem. 284: 21526-21535.
https://www.ncbi.nlm.nih.gov/pubmed/19509290

Sancak, Y., Peterson, T.R., Shaul, Y.D., Lindquist, R.A., Thoreen, C.C., Bar-Peled, L., and Sabatini, D.M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320:1496-1501.
https://www.ncbi.nlm.nih.gov/pubmed/18497260


*These authors contributed equally to this work
#Co-corresponding authors